Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75.212
Filtrar
1.
Huan Jing Ke Xue ; 45(5): 2678-2685, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629531

RESUMO

Xingkai Lake, located in Heilongjiang Province, is an important fishery and agricultural base and is seriously polluted by agricultural non-point sources. To clarify the residual status of many pesticides in the surface water of Xingkai Lake, 27 types of pesticides, herbicides, and their degradation products were analyzed in rice paddy, drainage, and surface water around Xingkai Lake (China) during the rice heading and maturity periods. The results showed that all 27 types of pesticides, herbicides, and their degradation products were detected during the rice heading period, and the total concentration ranged from 247.97 to 6 094.49 ng·L-1. Additionally, 25 species were detected during the rice maturity period, and the total concentration ranged from 485.36 to 796.23 ng·L-1. In comparison, more pesticides, herbicides, and derived degradation products were detected during the heading period, and their total concentration was higher as well. During the rice heading period, atrazine, simetryn, and paclobutrazol were the main detected pesticides, atrazine and isoprothiolane were the main pesticides detected during the maturity period. The distribution characteristics of pesticides and herbicides in the surface water around Xingkai Lake (China) was similar to that in drainage, so they were probably imported from the drainage and rice paddy. The average risk quotient (RQ) values of atrazine, simetryn, prometryn, butachlor, isoprothiolane, and oxadiazon were higher than 0.1 in drainage and Xingkai Lake (China), which showed a potential risk to aquatic organisms.


Assuntos
Atrazina , Herbicidas , Resíduos de Praguicidas , Praguicidas , Tiofenos , Poluentes Químicos da Água , Praguicidas/análise , Resíduos de Praguicidas/análise , Lagos , Monitoramento Ambiental , Água/química , China , Medição de Risco , Poluentes Químicos da Água/análise
2.
Wei Sheng Yan Jiu ; 53(2): 316-331, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38604970

RESUMO

OBJECTIVE: To establishe an analysis and identification method for 2-methylisoborneol(2-MIB) and geosmin(GSM) in water using purge and trap-gas chromatography-mass spectrometry. METHODS: The samples were enriched and analyzed using a purge and trap system, followed by the separation on a DB-624(30 m×0.25 mm, 1.4 µm) chromatographic column. Quantification was performed using gas chromatography-mass spectrometry with the selected ion monitoring and internal standard calibration. RESULTS: The calibration curves for 2-MIB and GSM showed an excellent linearity in the range of 1 to 100 ng/L with R~2 values greater than 0.999. The detection limit and quantification limit for both 2-MIB and GSM were 0.33 ng/L and 1.0 ng/L, respectively. Spike recovery experiments were further carried on the source water and drinking water at three concentration levels. It showed that the average recoveries were from 82.0% to 111.0% for 2-MIB while 84.0% to 110% for GSM. Additionally, the test precision of 2-MIB and GSM ranged from 1.9% to 7.3% and 1.9% to 5.0%(n=6), respectively. The analysis of multiple samples including the local source water, treated water and distribution network water confirmed the existence of 2-MIB and GSM. CONCLUSION: Compared to the national standard(GB/T 5750.8-2023), the proposed method enables fully automated sample introduction and analysis without the extra pre-treatment. It provides the advantages of simplicity, good repeatability and high accuracy.


Assuntos
Água Potável , Naftóis , Poluentes Químicos da Água , Água/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Água Potável/análise , Canfanos/análise , Poluentes Químicos da Água/análise , Odorantes/análise
3.
J Sep Sci ; 47(7): e2300901, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605456

RESUMO

An effective method by high-speed countercurrent chromatography coordinated with silver nitrate for the preparative separation of sterones and triterpenoid saponins from Achyranthes bidentata Blume was developed. Methyl tert-butyl ether/n-butanol/acetonitrile/water (4:2:3:8, v/v/v/v) was selected for 20-hydroxyecdysone (compound 1), chikusetsusaponin IVa methyl ester (compound 4), 2'-glycan-11-keto-pigmented saponin V (compound 5), as well as a pair of isomers of 25S-inokosterone (compound 2) and 25R-inokosterone (compound 3), which were further purified by silver nitrate coordinated high-speed countercurrent chromatography. What is more, dichloromethane/methanol/isopropanol/water (6:6:1:4, v/v/v/v) was applied for calenduloside E (compound 6), 3ß-[(O-ß-d-glucuronopyranosyl)-oxy]-oleana-11,13-dien-28-oic acid (compound 7), zingibroside R1 (compound 8) and chikusetsusaponin IVa (compound 9). Adding Ag+ to the solvent system resulted in unique selectivity for 25R/25S isomers of inokosterone, which increased the complexing capability and stability of Ag+ coordinated 25S-inokosterone, as well as the α value between them. These results were further confirmed by the computational calculation of geometry optimization and frontier molecular orbitals assay. Comprehensive mass spectrometry and nuclear magnetic resonance analysis demonstrated the structures of the obtained compounds.


Assuntos
Achyranthes , Colestenos , Ácido Oleanólico/análogos & derivados , Saponinas , Distribuição Contracorrente , Achyranthes/química , Nitrato de Prata , Extratos Vegetais/química , Água/química , Cromatografia Líquida de Alta Pressão/métodos
4.
Biomed Res Int ; 2024: 6670159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606199

RESUMO

Objective: This research study investigated the effect of new decontamination protocols on the bonding capacity of saliva-contaminated monolithic zirconia (MZ) ceramics cemented with two different monomer-containing self-adhesive resin cements. Materials and Methods: Standardized tooth preparations (4 mm. axial height) were performed for eighty human maxillary premolars under constant water cooling system. Eighty monolithic zirconia crowns (Whitepeaks Supreme Monolith) (n = 8/10 groups) were manufactured by CAD-CAM. Specimens were kept in the artificial saliva at pH = 7.3 for 1 minute at 37°C except control groups. The specimens have not been prealumina blasted and grouped according to cleaning methods and resin cements: control groups (C) (no saliva contamination + GPDM + 4-META (N) (CN) and 10-MDP (M) containing resin cement (CM), alumina blasted (AL) + GPDM + 4-META (ALN) and 10-MDP containing resin cement (ALM), zirconium oxide containing universal cleaning agent (IC) applied + GPDM + 4-META (N) (ICN) and 10-MDP containing resin cement (ICM), pumice (P) applied + GPDM + 4-META (PN) and 10-MDP containing resin cement (PM), and air-water spray (AW) applied + GPDM + 4-META (AWN) and 10-MDP containing resin cement (AWM)). Monobond Plus was applied to all surfaces for 40 seconds before cementation. The thermal cycle was applied at 5,000 cycles after cementation. The crowns were tested in tensile mode at a speed of 1 mm/min. The mode of failure was recorded. SEM examinations were carried out at different magnifications. Data were analyzed using rank-based Kruskal-Wallis and Mann-Whitney tests. Results: No significant differences were found between the surface treatments and between the two types of resin cements. Interaction effects between surface treatments and resin cements were found to be significant by two-way ANOVA analysis. ICM group resulted in significantly better bond strength results compared with CN. ICM was found to result in better bond strength results compared with PM. The combination of universal cleaning agent and 10-MDP containing resin cement had significantly the highest cementation bond strength values. The increasing order of mean tensile bond strength values of decontamination protocols was C < AW < P < AL < IC. The mean tensile bond strength of 10-MDP containing resin cement was slightly higher than GPDM + 4-META containing resin cement. Conclusions: Universal cleaning agents can be preferred as an efficient cleaning method with 10-MDP-containing cement after saliva contamination for better adhesive bond strength of 4 mm crown preparation height of monolithic zirconia ceramics.


Assuntos
Colagem Dentária , Metacrilatos , Cimentos de Resina , Humanos , Cimentos de Resina/química , Saliva , Descontaminação , Teste de Materiais , Zircônio/química , Cerâmica/química , Água/química , Resistência ao Cisalhamento , Propriedades de Superfície , Análise do Estresse Dentário
5.
Protein Sci ; 33(5): e4986, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38607226

RESUMO

Despite the generally accepted role of the hydrophobic effect as the driving force for folding, many intrinsically disordered proteins (IDPs), including those with hydrophobic content typical of foldable proteins, behave nearly as self-avoiding random walks (SARWs) under physiological conditions. Here, we tested how temperature and ionic conditions influence the dimensions of the N-terminal domain of pertactin (PNt), an IDP with an amino acid composition typical of folded proteins. While PNt contracts somewhat with temperature, it nevertheless remains expanded over 10-58°C, with a Flory exponent, ν, >0.50. Both low and high ionic strength also produce contraction in PNt, but this contraction is mitigated by reducing charge segregation. With 46% glycine and low hydrophobicity, the reduced form of snow flea anti-freeze protein (red-sfAFP) is unaffected by temperature and ionic strength and persists as a near-SARW, ν ~ 0.54, arguing that the thermal contraction of PNt is due to stronger interactions between hydrophobic side chains. Additionally, red-sfAFP is a proxy for the polypeptide backbone, which has been thought to collapse in water. Increasing the glycine segregation in red-sfAFP had minimal effect on ν. Water remained a good solvent even with 21 consecutive glycine residues (ν > 0.5), and red-sfAFP variants lacked stable backbone hydrogen bonds according to hydrogen exchange. Similarly, changing glycine segregation has little impact on ν in other glycine-rich proteins. These findings underscore the generality that many disordered states can be expanded and unstructured, and that the hydrophobic effect alone is insufficient to drive significant chain collapse for typical protein sequences.


Assuntos
Proteínas Intrinsicamente Desordenadas , Dobramento de Proteína , Água/química , Cloreto de Sódio , Glicina/química , Interações Hidrofóbicas e Hidrofílicas
6.
Zhongguo Zhong Yao Za Zhi ; 49(3): 607-617, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621864

RESUMO

This study aims to optimize the composite excipients suitable for the preparation of concentrated water pills of personalized traditional Chinese medicine prescriptions by the extruding-rounding method and investigate the roles of each excipient in the preparation process. The fiber materials and powder materials were taken as the standard materials suitable as excipients in the preparation of personalized concentrated water pills without excipient. Water absorption properties and torque rheology were used as indicators for selecting the materials of composite excipients. The ratio of composite excipients was optimized by D-optimal mixture design. Moreover, to demonstrate the universal applicability of the optimal composite excipients, this study selected three traditional Chinese medicine prescriptions with low, medium, and high extraction rates to verify the optimal ratio. Finally, the effects of each selected excipient on the molding of personalized concentrated water pills were investigated with the four parameters of the pill molding quality as indicators. The optimized composite excipients were dextrin∶microcrystalline cellulose(MCC)∶low-substituted hydroxypropyl cellulose(L-HPC) at a ratio of 1∶2∶4. The composite excipients were used for the preparation of personalized concentrated water pills with stable process, good quality, and a wide range of application. Dextrin acted as a diluent and accelerated the speed of extruding. MCC mainly served as an adhesive, increasing the cohesion and viscosity of the pills. L-HPC as a water absorbent and disintegrating agent can absorb and hold the water of the concentrate and has a strong disintegration effect.


Assuntos
Medicamentos de Ervas Chinesas , Excipientes , Excipientes/química , Medicina Tradicional Chinesa , Água/química , Medicamentos de Ervas Chinesas/química
7.
Phys Chem Chem Phys ; 26(15): 11880-11892, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38568008

RESUMO

Recent experiments have revealed that adenosine triphosphate (ATP) suppresses the fibrillation of amyloid peptides - a process closely linked to neurodegenerative diseases such as Alzheimer's and Parkinson's. Apart from the adsorption of ATP onto amyloid peptides, the molecular understanding is still limited, leaving the underlying mechanism for the fibrillation suppression by ATP largely unclear, especially in regards to the molecular energetics. Here we provide an explanation at the molecular scale by quantifying the free energies using all-atom molecular dynamics simulations. We found that the changes of the free energies due to the addition of ATP lead to a significant equilibrium shift towards monomeric peptides in agreement with experiments. Despite ATP being a highly charged species, the decomposition of the free energies reveals that the van der Waals interactions with the peptide are decisive in determining the relative stabilization of the monomeric state. While the phosphate moiety exhibits strong electrostatic interactions, the compensation by the water solvent results in a minor, overall Coulomb contribution. Our quantitative analysis of the free energies identifies which intermolecular interactions are responsible for the suppression of the amyloid fibril formation by ATP and offers a promising method to analyze the roles of similarly complex cosolvents in aggregation processes.


Assuntos
Amiloide , Peptídeos , Amiloide/química , Peptídeos/química , Água/química , Entropia , Solventes/química , Simulação de Dinâmica Molecular , Proteínas Amiloidogênicas , Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química
8.
Chemosphere ; 355: 141891, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38575086

RESUMO

Mercury pollution poses a global health threat due to its high toxicity, especially in seafood where it accumulates through various pathways. Developing effective and affordable technologies for mercury removal from water is crucial. Adsorption stands out as a promising method, but creating low-cost materials with high selectivity and capacity for mercury adsorption is challenging. Here we show a sustainable method to synthesize low-cost sulfhydrylated cellulose with ethylene sulfide functionalities bonded glucose units. Thiol-functionalized cellulose exhibits exceptional adsorption capacity (1325 mg g-1) and selectivity for Hg(II) over other heavy metals (Co, Cu, Zn, Pb) and common cations (Ca++, Mg++) found in natural waters. It performs efficiently across a wide pH range and different aqueous matrices, including wastewater, and can be regenerated and reused multiple times without significant loss of performance. This approach offers a promising solution for addressing mercury contamination in water sources.


Assuntos
Mercúrio , Poluentes Químicos da Água , Mercúrio/análise , Água/química , Celulose/química , Compostos de Sulfidrila , Adsorção , Poluentes Químicos da Água/química , Cinética
9.
J Adhes Dent ; 26(1): 103-116, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38602234

RESUMO

PURPOSE: To investigate the antibacterial effects of Terminalia catappa Linn (TCL) leaf extracts at different concentrations and the effects of these extracts used as primers on the long-term adhesive properties of two universal adhesives. MATERIALS AND METHODS: After extract preparation, the antimicrobial and antibacterial activities of TCL against Streptococcus mutans (UA 159) were assessed in microdilution assays to provide the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Additionally, to provide quantitative data on the ability of TCL extract to reduce cell viability, colony forming units (CFU) were counted. To examine adhesive properties, 288 human molars were randomly assigned to 32 experimental conditions (n = 9) according to the following variables: (1) treatment agent: negative control (untreated surface), and primers at concentrations of 1xMIC, 5xMIC, and 10xMIC; (2) adhesives: Scotchbond Universal (SBU) and Futurabond Universal (FBU); (3) adhesive strategy: etch-and-rinse (ER) or self-etch (SE); and (4) storage time: 24 h or after 2 years. Primers were applied for 60 s, upon which the teeth were incrementally restored and sectioned into adhesive-dentin bonded sticks. These were tested for microtensile bond strength (µTBS) and nanoleakage (NL) after 24-h and 2-year water storage, as well as in-situ degree of conversion (DC) at 24 h. The chemical profile of the hybrid layer was determined via micro-Raman spectroscopy. Biofilm assay data were analyzed using the Kruskal-Wallis test; the pH of culture media and the chemical profile were analyzed by one-way ANOVA. The adhesive properties (µTBS, NL, DC) were evaluated using a four-way ANOVA and Tukey's test. Significance was set at 5%. RESULTS: Similar values of MIC and MBC were observed (2 mg/ml), showing bactericidal potential. CFU analysis demonstrated that concentrations of 5xMIC and 10xMIC significantly inhibited biofilm formation (p < 0.001). The application of the TCL primer at all concentrations significantly increased the immediate µTBS and DC, and decreased the immediate NL values when compared to the control group (p < 0.05), regardless of the adhesive and adhesive strategies. Despite an increase in the NL values for all groups after 2 years (p > 0.05), in groups where the TCL primer was applied, the µTBS remained constant after 2 years for both adhesives, while a decrease in the µTBS was observed in the control groups (p < 0.05). Usually, 10xMIC showed better results than 1xMIC and 5xMIC (p < 0.05). The application of TCL promoted cross-linking; cross-linking rates increased proportionally to the concentration of TCL (p < 0.05). CONCLUSION: Primers containing TCL promoted bactericidal and bacteriostatic action, as well as cross-linking with dentin, while maintaining the adhesive properties of the adhesive-dentin interface after 2 years of water storage.


Assuntos
Colagem Dentária , Terminalia , Humanos , Cimentos Dentários/farmacologia , Cimentos Dentários/química , Adesivos Dentinários/farmacologia , Adesivos Dentinários/química , Resinas Compostas/química , Dentina , Resistência à Tração , Cimentos de Resina/farmacologia , Cimentos de Resina/química , Água/química , Antibacterianos/farmacologia , Teste de Materiais
10.
An Acad Bras Cienc ; 96(1): e20231088, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597494

RESUMO

The thorough redox alteration of a lava flow is an undescribed feature in intraplate basaltic provinces. The Early Cretaceous (134.5 Ma) Paraná Province displays that alteration in the major Muralha Flow. This oxidized and reduced flow from the southern part of the province was studied with satellite images, field surveying, petrography, and published whole rock geochemistry. The 100 x 100 km flow from the Cuesta de Haedo presents two hydrothermal tiers - lower Tier 1 is gray to white, upper Tier 2 is red. Iron oxyhydroxides characterize Tier 2. Tier 1 contains clay minerals, zeolites, pyrite and calcite, and agate (possibly amethyst) geodes. In a first event, the upper Tier 2 was oxidized by hot water from the underlying Guarani Paleoaquifer. The high water/rock ratio decreased due to porosity clogging by precipitation of secondary minerals, and the fluid became reducing. Lowering of Eh and pH was caused by reaction of water with reducing particles (calcite, organic molecules) present in the paleoerg sandstones and with fresh rock surfaces. A lower Tier 1 was then formed during slow, hot water percolation. Reduction was interrupted below 30 °C (calcite formation). Large scale, similar alteration occurred in all studied oceanic ridges and only rarely in continental environments.


Assuntos
Carbonato de Cálcio , Minerais , Água/química , Oxirredução , Brasil
11.
AAPS PharmSciTech ; 25(4): 80, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600329

RESUMO

In the current study, self-nano-emulsifying (SNE) physically cross-linked polyethylene glycol (PEG) organogel (SNE-POG) as an innovative hybrid system was fabricated for topical delivery of water-insoluble and unstable bioactive compound curcumin (CUR). Response surface methodology (RSM) based on Optimal Design was utilized to evaluate the formulation factors. Solid fiber mechanism with homogenization was used to prepare formulations. Pharmaceutical evaluation including rheological and texture analysis, their mathematical correlations besides physical and chemical stability experiments, DSC study, in vitro release, skin permeation behavior, and clinical evaluation were carried out to characterize and optimize the SNE-OGs. PEG 4000 as the main organogelator, Poloxamer 188 (Plx188) and Ethyl Cellulose (EC) as co-gelator/nanoemulsifier agents, and PEG 400 and glycerin as solvent/co-emulsifier agents could generate SNE-POGs in PS range of 356 to 1410 nm that indicated organic base percentage and PEG 4000 were the most detrimental variables. The optimized OG maintained CUR stable in room and accelerated temperatures and could release CUR sustainably up to 72 h achieving high flux of CUR through guinea pig skin. A double-blind clinical trial confirmed that pain scores, stiffness, and difficulty with physical function were remarkably diminished at the end of 8 weeks compared to the placebo (71.68% vs. 7.03%, 62.40% vs. 21.44%, and 45.54% vs. 8.66%, respectively) indicating very high efficiency of system for treating knee osteoarthritis. SNE-POGs show great potential as a new topical drug delivery system for water-insoluble and unstable drugs like CUR that could offer a safe and effective alternative to conventional topical drug delivery system.


Assuntos
Curcumina , Nanopartículas , Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/tratamento farmacológico , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos/métodos , Água/química , Nanopartículas/química
12.
Astrobiology ; 24(4): 423-441, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563825

RESUMO

The possible existence of a microbial community in the venusian clouds is one of the most intriguing hypotheses in modern astrobiology. Such a community must be characterized by a high survivability potential under severe environmental conditions, the most extreme of which are very low pH levels and water activity. Considering different scenarios for the origin of life and geological history of our planet, a few of these scenarios are discussed in the context of the origin of hypothetical microbial life within the venusian cloud layer. The existence of liquid water on the surface of ancient Venus is one of the key outstanding questions influencing this possibility. We link the inherent attributes of microbial life as we know it that favor the persistence of life in such an environment and review the possible scenarios of life's origin and its evolution under a strong greenhouse effect and loss of water on Venus. We also propose a roadmap and describe a novel methodological approach for astrobiological research in the framework of future missions to Venus with the intent to reveal whether life exists today on the planet.


Assuntos
Vênus , Planetas , Exobiologia , Água/química
13.
J Chromatogr A ; 1721: 464850, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38564932

RESUMO

The solvation parameter model uses five system independent descriptors to characterize compound properties defined as excess molar refraction, E, dipolarity/polarizability, S, hydrogen-bond acidity, A, hydrogen-bond basicity, B, and McGowan's characteristic volume, V, to model transfer properties between condensed phases. The V descriptor is assigned from structure. For compounds liquid at 20 °C the E descriptor can be assigned from the characteristic volume and its refractive index. The E descriptor for compounds solid at 20 °C and the S, A, and B descriptors are experimental properties traditionally assigned from chromatographic, liquid-liquid partition, and solubility measurements. In this report liquid-liquid partition constants in totally organic and aqueous biphasic systems are evaluated as a standalone technique for descriptor assignments. Using six totally organic biphasic systems the S, A, and B descriptors were assigned with an average absolute deviation (AAD) of about 0.04, 0.03, and 0.04, respectively, compared with the best estimate of the true descriptor values for 65 compounds. The E descriptor for compounds solid at 20 °C can only be estimated with an AAD of approximately 0.1. For six aqueous biphasic systems the B descriptor is assigned with a lower AAD of 0.028 and higher AAD of 0.08 and 0.05 for the S and A descriptors, respectively, than for the totally organic biphasic systems for compounds with a reliable value for the E descriptor. The preferred system for descriptor assignments utilizes both totally organic biphasic systems (heptane-1,1,1-trifluoroethanol, isopentyl ether-propylene carbonate, isopentyl ether-ethanolamine, heptane-ethylene glycol, heptane-formamide, and 1,2-dichloroethane-ethylene glycol) and aqueous biphasic systems (octanol-water, cyclohexane-water) with the possible substitution of some systems with alternative systems of similar selectivity. For 55 varied compounds this combination of eight organic and aqueous biphasic systems resulted in an AAD of approximately 0.03, 0.02, and 0.02 for the S, A, and B descriptors compared to the best estimate of the true descriptor value. For 30 compounds solid at 20 °C the AAD for the E descriptor of 0.11 is poorly assigned. The relative average absolute deviation in percent (RAAD) corresponds to 9.7 %, 3.1 %. 4.0 % and 8.3 % for E, S, A, and B, respectively, for the eight biphasic systems. Liquid-liquid partition is compared to reversed-phase liquid and gas chromatography as a standalone technique for descriptor assignments.


Assuntos
Éteres , Água , Água/química , Heptanos/química , Etilenoglicóis , Hidrogênio
14.
Biochem Biophys Res Commun ; 710: 149857, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38583232

RESUMO

Molecular mobility of intracellular water is a crucial parameter in the study of the mechanism of desiccation tolerance. As one of the parameters that reflecting molecular mobility, the viscosity of intracellular water has been found intimately related with the protection of the phospholipid membrane because it quantifies the diffusion ability of water and mass in the intracellular environment. In this work we measured the intracellular water relaxation time, which can be translated into water viscosity, by using a previously established NIR-dielectric method to monitor the drying process of baker's yeast and Jurkat cells with different desiccation tolerance. We found that intracellular saccharide can significantly decrease the intracellular water viscosity. Also, the intracellular water diffusion coefficient obtained from this method were found in good agreement with other reports.


Assuntos
Fermento Seco , Humanos , Água/química , Espectroscopia de Luz Próxima ao Infravermelho , Células Jurkat , Saccharomyces cerevisiae/química , Dessecação
15.
Food Microbiol ; 121: 104516, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637078

RESUMO

Oxidation-reduction potential (ORP) is commonly used as a rapid measurement of the antimicrobial potential of free chlorine during industrial fresh produce washing. The current study tested the hypothesis that ORP can act as a "single variable" measurement of bacterial (vegetative and endospores) inactivation effectiveness with free chlorine irrespective of the water pH value. This situation has on occasion been assumed but never confirmed nor disproven. Chlorine-dosed pH 6.5 and 8.5 phosphate buffer solutions were inoculated with Escherichia coli (E. coli), Listeria innocua (L. innocua), or Bacillus subtilis (B. subtilis) endospores. ORP, free chlorine (FC), and log reduction were monitored after 5 s (for E. coli and L. innocua) and up to 30 min (for B. subtilis spores) of disinfection. Logistic and exponential models were developed to describe how bacteria reduction varied as a function of ORP at different pH levels. Validation tests were performed in phosphate buffered pH 6.5 and 8.5 cabbage wash water periodically dosed with FC, cabbage extract and a cocktail of Escherichia coli O157:H7 (E. coli O157:H7) and Listeria monocytogenes (L. monocytogenes). The built logistic and exponential models confirmed that at equal ORP values, the inactivation of the surrogate strains was not consistent across pH 6.5 and pH 8.5, with higher reductions at higher pH. This is the opposite of the well-known free chlorine-controlled bacterial inactivation, where the antibacterial effect is higher at lower pH. The validation test results indicated that in the cabbage wash water, the relationship between disinfection efficiency and ORP was consistent with the oxidant demand free systems. The study suggests that ORP cannot serve as a reliable single variable measurement to predict bacterial disinfection in buffered systems. When using ORP to monitor and control the antibacterial effectiveness of the chlorinated wash water, it is crucial to take into account (and control) the pH.


Assuntos
Escherichia coli O157 , Listeria monocytogenes , Listeria , Desinfecção/métodos , Cloro/farmacologia , Cloro/análise , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Oxidantes , Contagem de Colônia Microbiana , Manipulação de Alimentos/métodos , Cloretos , Oxirredução , Água/química , Antibacterianos , Concentração de Íons de Hidrogênio , Fosfatos
16.
Sci Adv ; 10(16): eadj7179, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38630826

RESUMO

The formation of protein precursors, due to the condensation of atomic carbon under the low-temperature conditions of the molecular phases of the interstellar medium, opens alternative pathways for the origin of life. We perform peptide synthesis under conditions prevailing in space and provide a comprehensive analytic characterization of its products. The application of 13C allowed us to confirm the suggested pathway of peptide formation that proceeds due to the polymerization of aminoketene molecules that are formed in the C + CO + NH3 reaction. Here, we address the question of how the efficiency of peptide production is modified by the presence of water molecules. We demonstrate that although water slightly reduces the efficiency of polymerization of aminoketene, it does not prevent the formation of peptides.


Assuntos
Meio Ambiente Extraterreno , Água , Meio Ambiente Extraterreno/química , Água/química , Peptídeos
17.
Food Chem ; 447: 138980, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38564849

RESUMO

Supercooling is a main controllable factor for the fundamental understanding the high-pressure shift freezing (HPSF). In the study, a self-developed device based on the diamond anvil cell (DAC) and confocal Raman microscopy was utilized to realize an in-situ investigation of supercooling behaviour during HPSF of the pure water and sucrose solution. The spectra were used to determine the freezing point which is shown as a spectral phase marker (SD). The hydrogen bond strengths of water and sucrose solution under supercooling states were estimated by peak position and peak area ratio of sub-peaks. The results showed that the OH stretching bands had redshift under supercooling states. Moreover, the addition of sucrose molecules could strengthen the hydrogen bonding strength of water molecules under supercooling states. Thus, the DAC combined with Raman spectroscopy could be considered a novel strategy for a deep understanding of the supercooling behaviour during HPSF.


Assuntos
Água , Congelamento , Água/química , Temperatura de Transição , Microscopia Confocal , Ligação de Hidrogênio
18.
Sci Rep ; 14(1): 8406, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600150

RESUMO

The aim of this work was to synthesize a green nanoparticle SnCuO@FeO nanocomposite core-shell to break oily water emulsions during petroleum-enhancing production processes as an alternative to chemical and physical processes. In this study, eight bacterial isolates (MHB1-MHB8) have been isolated from tree leaves, giant reeds, and soil samples. The investigation involved testing bacterial isolates for their ability to make FeO nanoparticles and choosing the best producers. The selected isolate (MHB5) was identified by amplification and sequencing of the 16S rRNA gene as Bacillus paramycoides strain OQ878685. MHB5 produced the FeO nanoparticles with the smallest particle size (78.7 nm) using DLS. XRD, FTIR, and TEM were used to characterize the biosynthesized nanoparticles. The jar experiment used SnCuO@FeO with different ratios of Sn to CuO (1:1, 2:1, and 3:1) to study the effect of oil concentration, retention time, and temperature. The most effective performance was observed with a 1:1 ratio of Sn to CuO, achieving an 85% separation efficiency at a concentration of 5 mg/L, for a duration of 5 min, and at a temperature of 373 K. Analysis using kinetic models indicates that the adsorption process can be accurately described by both the pseudo-first-order and pseudo-second-order models. This suggests that the adsorption mechanism likely involves a combination of film diffusion and intraparticle diffusion. Regarding the adsorption isotherm, the Langmuir model provides a strong fit for the data, while the D-R model indicates that physical interactions primarily govern the adsorption mechanism. Thermodynamic analysis reveals a ∆H value of 18.62 kJ/mol, indicating an exothermic adsorption process. This suggests that the adsorption is a favorable process, as energy is released during the process. Finally, the synthesized green SnCuO@FeO nanocomposite has potential for use in advanced applications in the oil and gas industry to help the industry meet regulatory compliance, lower operation costs, reduce environmental impact, and enhance production efficiency.


Assuntos
Nanocompostos , Petróleo , Poluentes Químicos da Água , Emulsões , RNA Ribossômico 16S , Termodinâmica , Água/química , Adsorção , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
19.
J Environ Sci (China) ; 142: 33-42, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527894

RESUMO

Biotoxicity assessment results of environmental waters largely depend on the sample extraction protocols that enrich pollutants to meet the effect-trigger thresholds of bioassays. However, more chemical mixture does not necessarily translate to higher combined biotoxicity. Thus, there is a need to establish the link between chemical extracting efficiency and biotoxicity outcome to standardize extraction methods for biotoxicity assessment of environmental waters. This study compares the performance of five different extraction phases in solid phase extraction (SPE), namely HLB, HLB+Coconut, C18 cartridge, C18 disk and Strata-X, and evaluated their chemical extracting efficiencies and biotoxicity outcomes. We quantitatively assessed cytotoxicity, acute toxicity, genotoxicity, estrogenic activity, and neurotoxicity of the extracts using in vitro bioassays and characterized the chemical extracting efficiencies of the SPE methods through chemical recoveries of 23 model compounds with different polarities and total organic carbon. Using Pareto ranking, we identified HLB+Coconut as the optimal SPE method, which exhibited the highest level of water sample biotoxicity and recovered the most chemicals in water samples. We found that the biotoxicity outcomes of the extracted water samples significantly and positively correlated with the chemical extracting efficiencies of the SPE methods. Moreover, we observed synchronous changing patterns in biotoxicity outcome and chemical extracting efficiencies in response to increasing sample volumes per cartridge (SVPC) during SPE. Our findings underscore that higher chemical extracting efficiency of SPE corresponds to higher biotoxicity outcome of environmental water samples, providing a scientific basis for standardization of SPE methods for adequate assessment of biotoxicities of environmental waters.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Águas Residuárias/toxicidade , Água/química , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
20.
J Environ Sci (China) ; 142: 269-278, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527892

RESUMO

The frequent detection of pharmaceutical compounds in the environment has led to a growing awareness, which may pose a major threat to the aquatic environment. In this study, photodegradation (direct and indirect photolysis) of two different dissociation states of fluoxetine (FLU) was investigated in water, mainly including the determination of photolytic transition states and products, and the mechanisms of indirect photodegradation with ·OH, CO3*- and NO3*. The main direct photolysis pathways are defluorination and C-C bond cleavage. In addition, the indirect photodegradation of FLU in water is mainly through the reactions with ·OH and NO3*, and the photodegradation reaction with CO3*- is relatively difficult to occur in the water environment. Our results provide a theoretical basis for understanding the phototransformation process of FLU in the water environment and assessing its potential risk.


Assuntos
Poluentes Químicos da Água , Água , Água/química , Fotólise , Fluoxetina , Radicais Livres , Preparações Farmacêuticas , Poluentes Químicos da Água/química , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...